Основные уравнения электродинамики Распространение волн в реальных диэлектриках Понятие о магнитном токе Тепловое излучение Законы фотоэффекта Контрольная работа

Классификация приборов микроволнового диапазона В настоящее время разработано много приборов, отличающихся как принципом действия, так и областью применения. Электровакуумные приборы СВЧ диапазона могут быть по характеру энергообмена разделены на приборы типов О и М. В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле или не используется совсем, или применяется только для фокусировки электронного потока и принципиального значения для процесса энергообмена не имеет.

Система схемотехнического моделирования zaradik Workbench предназначена для моделирования и анализа электрических схем. Программа zaradik Workbench позволяет моделировать аналоговые, цифровые и цифро-аналоговые схемы большой сложности. Имеющиеся в программе библиотеки включают в себя большой набор широко распространенных электронных компонентов. Есть возможность подключения и создания новых библиотек компонентов.

Рассмотрим алгоритм решения на примере цепи Если по условию задачи внутренним сопротивлением источников (r01, r02 т. д.) пренебречь нельзя, и они заданы, то их необходимо ввести в расчетную схему, включая последовательно с соответствующим источником. По признакам, данным в определении независимого контура, можно выделить следующие независимые контуры: a-b-c-g-a (контур I), c-d-e-g-c (контур II), a-g-e-f-a (контур III). 2. Направление обхода указывается стрелкой снаружи схемы. Направление обхода по контурам выбрали совпадающим с направлением движения часовой стрелки. 3. Направления контурных токов в независимых контурах выбрали такими же, как и направления обхода контуров, по часовой стрелке.

Рабочее задание: 1.По заданным значениям напряжения, частоты и параметров элементов найдите символическим методом токи во всех ветвях и напряжения на всех элементах цепи. 2.Составьте баланс комплексных мощностей. 3.Постройте в масштабе векторные диаграммы токов и напряжений.

Цель работы: настоящее домашнее задание ставит своей целью систематизировать знания, полученные при изучении раздела «электропривод» курса электротехники, и привить навык по выбору мощности двигателя для конкретного электропривода.

Особенности микроволнового диапазона и динамического принципа управления преобразованием энергии

Достоинства и недостатки использования микроволнового диапазона. Электромагнитные колебания микроволнового и оптического диапазонов обладают целым рядом специфических особенностей и свойств, отличающими их от смежных участков спектра. На сверхвысоких частотах длина волны соизмерима с линейными размерами физических тел. Геометрические размеры схемотехнических элементов аппаратуры, в том числе и антенн, также оказываются соизмеримыми с длиной волны и могут значительно превышать ее. Поэтому волны диапазона СВЧ обладают квазиоптическими свойствами, т. е. по характеру распространения приближаются к световым волнам. Наряду с этим принципы работы СВЧ устройств в значительной мере определяются явлениями дифракции и не могут непосредственно использовать законы геометрической оптики, а также законы обычных электрических цепей.

Особенности динамического принципа управления преобразованием Идея динамического управления процессом преобразования энергии предполагает возможность управления эффективностью энергообмена между электронным потоком, пронизывающем область локализации выходного электромагнитного поля и этим полем. При этом управление производится путем воздействия на электронный поток со стороны входного электромагнитного поля, локализованное в другом или том же самом межэлектродном промежутке.

Свободные носители зарядов в полупроводниках Полупроводники представляют собой вещества, которые по своей удельной электрической проводимости (10-6—10-8 Ом-1см-1) являются промежуточными между проводниками и диэлектриками. Их удельная проводимость сильно зависит от температуры и концентрации примесей, а во многих случаях — и от различных внешних воздействий (света, электрического поля и др.). По своему составу полупроводники можно разделить на простые, если они образованы атомами одного химического элемента (например, германия Ge, кремния Si, селена Se), и сложные, если они являются химическим соединением или сплавом двух или нескольких химических элементов (например, антимонид индия InSb, арсенид галлия GaAS и др.).

Равновесная концентрация СНЗ в примесных и беспримесных полупроводниках Равновесная концентрация зарядов в собственном полупроводнике Вероятность p нахождения свободного электрона в энергетическом состоянии W определяется статистической функцией Ферми— Дирака

Движение СНЗ в электрическом поле В собственном полупроводнике при Т=0К электроны и дырки отсутствуют и внешнее напряжение не вызывает в нем ток. При Т>0К в отсутствии электрического поля электроны и дырки движутся хаотически. Если же к полупроводнику приложить внешнее напряжение, то внутри него возникает упорядоченное движение электронов в направлении положительного градиента потенциала du/dx, а дырок — в обратном направлении. В полупроводнике под влиянием различных энергетических воздействий может возникнуть неравновесная концентрация зарядов. После прекращения воздействия избыточные носители постепенно рекомбинируют и концентрация вновь становится равновесной.

Электрическим переходом называется слой в полупроводнике между двумя областями с различными типами электропроводности (n-полупроводник, p-полупроводник, металл, диэлектрик) или разными величинами удельной электрической проводимости. Если переход создается между двумя областями полупроводника, одна из которых имеет электропроводность n-типа, а другая p-типа, то такой переход называется электронно-дырочным или p-n-переходом.

Электрические и геометрические параметры p-n перехода Высота потенциального барьера и контактная разность потенциалов

Статическое и дифференциальное сопротивления Дифференциальное сопротивление определяется выражением Rдиф = dU/dI и характеризует крутизну ВАХ в рассматриваемой точке. Для идеализированного перехода по формуле (3.16) можно получить аналитическое выражение

Способы нарушения равновесия Равновесие в переходе может быть нарушено либо путем изменения напряженности поля в переходе, либо путем изменения концентрации СНЗ. Концентрация СНЗ как в переходе, так и прилегающих к нему областях полупроводника, может быть изменена, например, путем облучения полупроводника светом подходящей длины волны или путем любого другого воздействия, изменяющего скорость генерации (рекомбинации) свободных носителей заряда в этих областях. Она может быть изменена также путем принудительного введения (инжекции) в переход или, наоборот, путем принудительного извлечения (экстракции) из перехода СНЗ.

Рассмотрим в чем заключается эффект накопления заряда. В случае подачи на диод коротких импульсов напряжения длительностью порядка единиц или долей микросекунды необходимо учитывать инерционность его включения и выключения, обусловленную переходными процессами. При протекании прямого тока через диод в его базе из-за инжекции накапливаются неосновные неравновесные носители заряда. Если изменить полярность приложенного к диоду напряжения с прямой на обратную, этот заряд рассасывается постепенно, и возникающий обратный ток вследствие высокой концентрации неосновных неравновесных носителей в базе окажется вначале значительно больше статического тока насыщения; величина его будет ограничиваться лишь внешней нагрузкой. Следовательно, при быстром переключении с прямого напряжения на обратное диод запирается не сразу. Это явление связано со спецификой работы p-n-перехода и обусловлено так называемым эффектом накопления заряда.

Электрофизические свойства однородных и неоднородных полупроводников

Концептуальная диаграмма.

Зонная структура состояний электронов в твердом теле.

Свободные носители зарядов в полупроводниках.

Равновесная концентрация СНЗ в примесных и беспримесных полупроводниках.

Движение СНЗ в электрическом поле.

Дрейфовая скорость, подвижность.

Контрольные вопросы.

2.1. Концептуальная диаграмма

Задача В трёхфазную четырехпроводную цепь с симметричным линейным напряжением UЛ = 220 В включены звездой сопротивлением RA = 6 Ом, RB = 7 Ом, RC = 9 Ом, XA = 7 Ом, XB = 6 Ом, XC = 11 Ом. Определить фазные и линейные токи, ток нейтрального провода, мощности всей цепи и каждой фазы в отдельности.

 

 


2.2. Зонная структура состояний электронов в твердом теле

Твердые тела делятся на аморфные и кристаллические. Большинство применяемых в настоящее время полупроводников относятся к кристаллическим телам, атомы которых, расположенные в определенном порядке, образуют пространственную решетку. Почти все они обладают ковалентной связью, при которой взаимное притяжение двух атомов осуществляется благодаря общей паре валентных электронов, вращающихся по орбите вокруг этих атомов.

Согласно принципу Паули в атоме не может быть более двух электронов, находящихся в одном и том же энергетическом состоянии, причем эти электроны должны обладать взаимно противоположными спинами. Общее количество электронов, окружающих ядро атома данного элемента в невозбужденном состоянии, определяется его порядковым номером.

При сближении атомов (для образования кристалла) их взаимодействие усиливается и на некотором расстоянии становится настолько значительным, что вызывает расщепление каждого энергетического уровня изолированного атома в энергетическую зону — область значений полной энергии электронов в кристалле, характеризуемую максимальным и минимальным значениями энергии. Число энергетических уровней в каждой зоне равно числу объединяющихся атомов. В 1 см3 твердого тела число атомов составляет около 1023, следовательно, и число уровней в каждой разрешенной зоне должно иметь тот же порядок. Ширина верхней из заполненных зон — валентной— максимальна; по мере приближения к атомному ядру расщепление энергетического уровня атома создает все более узкие зоны. Все внутренние зоны целиком заполнены электронами. Так как эти электроны сильно связаны с ядром, они не влияют на проводимость кристалла, и в дальнейшем внутренние зоны рассматриваться не будут. Между зонами, разрешенными для электронов, располагаются запрещенные зоны — области значений энергии, которыми не может обладать электрон в идеальном кристалле (кристалле без примесей и дефектов решетки). В полупроводниках обычно рассматривается лишь запрещенная зона, отделяющая валентную зону от зоны проводимости (свободной зоны при Т=0°К), на уровнях которой при возбуждении атома могут находиться электроны.

На рис.2.1 представлена схема энергетических зон, где заштрихованы разрешенные зоны; между ними расположены запрещенные зоны шириной ΔW, ΔW1... По оси ординат отложены величины энергии электронов W, а по оси абсцисс — расстояния х в направлении толщины кристалла. Ширина верхней запрещенной зоны ΔW равна разности энергий между нижним уровнем («дном») зоны проводимости Wnp и верхним уровнем («потолком») валентной зоны WB.

Рис. 2.1 Схема энергетических зон полупроводника

В металлах, где все валентные электроны являются электронами проводимости; запрещенная зона отсутствует, и валентная зона частично перекрывается с зоной проводимости (рис. 2.2а). При ΔW<3 эВ твердое тело условно принято считать полупроводником (рис. 2.2в), при ΔW>3 эВ — диэлектриком (рис. 2.2б).

а)

б)

в)

Рис.2.2 Распределение энергетических зон:

а) в металле; б) в диэлектрике; в) в полупроводнике


Практическое занятие по физике