Функции комплексного переменного Ряд Тейлора Ряд Лорана Сингулярный интеграл Аналитическая геометрия Найти общий интеграл дифференциального уравнения Вычислить пределы числовых последовательностей. Алгебра матриц

Курс лекций по математике Решение задач типового задания из учебника Кузнецова

Решение типового варианта контрольной работы.

Пример 1. Исследовать на сходимость числовые ряды:

Решение.

В данном случае  

Вычислим

Следовательно, ряд расходится.

Поскольку в записи общего члена ряда есть показательная функция , то используем признак Даламбера.

Для рассматриваемого ряда

;

Вычислим

Следовательно, по признаку Даламбера, исходный ряд сходится.

Так как в записи общего члена ряда есть факториал (), то используем признак Даламбера. Для исследуемого ряда

Вычислим

В пределе получили бесконечность, следовательно, исследуемый ряд расходится.

Воспользуемся радикальным признаком Коши. Здесь   

Вычислим

Полученное значение больше 1, следовательно, ряд расходится.

Исследуем данный ряд с помощью интегрального признака Коши. Составим соответствующий интеграл и вычислим его

Интеграл сходится, следовательно, исследуемый ряд сходится.

Составим ряд, эквивалентный исходному, оставив в числителе и знаменателе лишь старшие степени n:

Полученный ряд эквивалентен исходному, так как

Таким образом, исходный ряд и ряд  сходятся и расходятся одновременно. Т.к. ряд   сходится, следовательно, исходный ряд также сходится.

Так как , то

.

Ряд  расходится , следовательно, исходный ряд также расходится.

Оценим общий член ряда:

.

Ряд

Ряд  сходится , следовательно, эквивалентный ряд  также сходится. Т.к. из сходимости большего ряда следует сходимость меньшего, то исходный ряд сходится.

Пример2. Найти область сходимости ряда .

Решение. Воспользуемся признаком Даламбера:

Ряд сходится, если

 или ;

 или ,

.

Ряд расходится, если .

Неопределенный случай:  т.е.  или ,

Пусть :  ‑ сходится.

Ряд  сходится как эквивалентный сходящемуся ряду.

Пусть : .

Этот ряд – знакочередующийся. Исследуя его на абсолютную сходимость (рассматриваем ряд, состоящий из абсолютных величин), получим ряд как и при , а он сходится. Т.к. ряд, состоящий из абсолютных величин, сходится, то данный ряд сходится абсолютно.

Получили, что  ‑ область сходимости ряда.

Найти объем тела, заданного ограничивающими его поверхностями.

Задача 7. Найти поток векторного поля через замкнутую поверхность (нормаль внешняя).

Задача 1. Образует ли линейное пространство заданное множество, в котором определены сумма любых двух элементов  и  и произведение любого элемента   на любое число ?


Исследовать на сходимость числовые ряды